41 research outputs found

    A distributed bio-inspired method for multisite grid mapping

    Get PDF
    Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an application on a grid presumes three successive steps: the localization of the available resources together with their characteristics and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the use of the grid resources. The proposed mapper is tested on different scenarios

    A Distributed Bio-Inspired Method for Multisite Grid Mapping

    Get PDF
    Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an application on a grid presumes three successive steps: the localization of the available resources together with their characteristics and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the use of the grid resources. The proposed mapper is tested on different scenarios

    A note on values for Markovian coalition processes

    Full text link

    Realizzazione e sperimentazione di una architettura parallela a basso costo

    No full text

    A Distributed Bio-Inspired Method for Multisite Grid Mapping

    No full text
    Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an application on a grid presumes three successive steps: the localization of the available resources together with their characteristics and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the use of the grid resources. The proposed mapper is tested on different scenarios
    corecore